?-?点击上方“中国统计网”订阅我吧!-
概率分布就像3D眼镜。它们允许熟练的数据分析师识别其他完全随机变量的模式。在某种程度上,大多数其他数据科学或机器学习技能都基于对数据概率分布的某些假设。这使得概率知识成为统计学家构建工具箱的基础。如果您正在寻找如何成为数据科学家的第一步。不用多说,让我们切入正题。
什么是概率分布?在概率论和统计学中,随机变量是一个随机值的东西,比如“我看到的下一个人的身高”。给定一个随机变量X,我们想要一种描述它的值的方法。更重要的是,我们想要描述该变量获取特定值x的可能性。 例如,如果X是“我的女朋友有多少只猫”,那么这个数字可能是1的非零概率。有人可能会认为这个值甚至可能是5或10的非零概率。然而,没有办法(因此没有可能)一个人会有负数的猫。因此,我们想要一种明确的数学方法来表达变量X
可以采用的每个可能值x
,以及事件(X = x)的可能性。 为了做到这一点,我们定义函数P,使得P(X = x)是变量X具有值x的概率。对于间隔而不是离散值,我们也可以要求P(X x)。这将很快变得更加重要。
P是变量的密度函数,它表征变量的分布。
随着时间的推移,科学家们开始意识到自然界中的许多事物,现实生活往往表现相似,变量共享一个分布,或具有相同的密度函数(或类似的函数改变其中的一些常数)。 有趣的是,对于P是一个实际的密度函数,有些事情必须适用。
对于任何值 x,P(X = x) = 0。也没有什么疑义。
和最后一个:所述之和的P(X = x)的所有可能的值X为1。
最后一个意味着“X在宇宙中取任何价值的概率,必须加起来为1。?##离散与连续随机变量分布 最后,随机变量可以被认为属于两组:离散和连续随机变量。
离散随机变量
离散变量具有一组离散的可能值,每个值都具有非零概率。?例如,如果我们说,当翻转硬币时X =“1表示花色,0表示数字” 然后P(X = 1)= P(X = 0)= 0.5。?但是请注意,离散集合不必是有限的。 ?被用于建模的一些事件的概率的几率p之后发生k的概率。?它具有以下密度公式。
?P(X=k)=p(1-p)^k 0
还没有评论,来说两句吧...